Schlagwort-Archive: USB

BitBastelei #224 – USB Power Monitor – Software

BitBastelei #224 - USB Power Monitor - Software

(42 MB) 00:24:11

2016-12-25 11:00 🛈

In Folge #222 hatten wir einen USB Power-Monitor gebaut, welcher Spannung und Strom misst und somit auch mAh und mWh berechnen können soll. Diesmal geht es um die Softwareseite – alles kein Hexenwerk (und vermutlich mit unzähligen Bugs), aber ein gutes Beispiel wie man verschiedene, einfache Codefragmente zu einer nützlichen Software kombinieren kann.

Quellcode:

@Github

/*
* USBMeter Test Sketch
* Copyright (c) 2017, Florian Knodt - www.adlerweb.info
* 
* Based on U8G2 HelloWorld.ino 
* Copyright (c) 2016, olikraus@gmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, 
* are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice, this list 
*    of conditions and the following disclaimer.
*    
*  * Redistributions in binary form must reproduce the above copyright notice, this 
*    list of conditions and the following disclaimer in the documentation and/or other 
*    materials provided with the distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
*  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
*  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
*  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
*  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
*  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
*  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
*  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
*  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
*  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
*
*/

#include <Arduino.h>
#include <U8g2lib.h>

#ifdef U8X8_HAVE_HW_SPI
#include <SPI.h>
#endif
#ifdef U8X8_HAVE_HW_I2C
#include <Wire.h>
#endif

U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // All Boards without Reset of the Display

unsigned int ref_u = 610;
unsigned int ref_i = 412;
unsigned int ref_i_o = 145;
unsigned int ref_i_mva = 131;
unsigned int ref_DP = 615;
unsigned int ref_DN = 613;
unsigned int ref_VCC = 616;
unsigned int ref_OV = 2175;

unsigned int AA0=0;
unsigned int AA1=0;
unsigned int AA2=0;
unsigned int AA3=0;
unsigned int AA6=0;
unsigned int AA7=0;

void setup(void) {
  pinMode(2, OUTPUT);
  pinMode(3, INPUT_PULLUP);
  pinMode(4, INPUT_PULLUP);
  pinMode(5, INPUT_PULLUP);

  analogReference(INTERNAL);

  Serial.begin(115200);
  Serial.println("USBMonitor Self-Test");
  
  u8g2.begin();
}

void printV(unsigned int volt) {
  unsigned int temp = volt / 100;
  boolean srt = false;

  if(temp > 10) srt = true;
  
  u8g2.print(temp);
  u8g2.print('.');
  if(srt) {
    temp = (volt % 100) / 10;
  }else{
    temp = volt % 100;
    if(temp < 10) u8g2.print('0');
  }
  u8g2.print(temp);
}


void printV(signed int volt) {
  if(volt > 0) printV((unsigned int)volt);

  u8g2.print('-');
  volt *= -1;
  unsigned int temp = volt / 100;
  
  u8g2.print(temp);
  u8g2.print('.');
  temp = (volt % 100) / 10;
  u8g2.print(temp);
}

void loop(void) {
  u8g2.clearBuffer();					// clear the internal memory
  u8g2.setFont(u8g2_font_unifont_t_latin);	// choose a suitable font
  
  u8g2.setCursor(10, 12);
  u8g2.print("SELF-TEST-MODE");

  u8g2.setCursor(0, 26);
  u8g2.print("S1:");
  u8g2.print((digitalRead(5) ? 1 : 0));
  
  u8g2.setCursor(42, 26);
  u8g2.print("S2:");
  u8g2.print((digitalRead(4) ? 1 : 0));
  
  u8g2.setCursor(85, 26);
  u8g2.print("S3:");
  u8g2.print((digitalRead(3) ? 1 : 0));

  u8g2.setCursor(0, 37);
  u8g2.print("A0:");
  //u8g2.print(analogRead(A0));
  unsigned int adco = (float)analogReadCache(AA0) * ref_u / 1000;
  printV(adco);

  u8g2.setCursor(64, 37);
  u8g2.print("A1:");
  //u8g2.print(analogRead(A1));
  signed int itmp=0;
  adco = (float)analogReadCache(AA1) * ref_i / 1000;
  itmp = adco - ref_i_o;
  itmp *= ref_i_mva;
  itmp /= 10;
  printV(itmp);

  u8g2.setCursor(0, 48);
  u8g2.print("A2:");
  //u8g2.print(analogRead(A2));
  adco = (float)analogReadCache(AA2) * ref_DP / 1000;
  printV(adco);

  u8g2.setCursor(64, 48);
  u8g2.print("A3:");
  //u8g2.print(analogRead(A3));
  adco = (float)analogReadCache(AA3) * ref_DN / 1000;
  printV(adco);

  u8g2.setCursor(0, 59);
  u8g2.print("A6:");
  //u8g2.print(analogRead(A6));
  adco = (float)analogReadCache(AA6) * ref_OV / 1000;
  printV(adco);

  u8g2.setCursor(64, 59);
  u8g2.print("A7:");
  //u8g2.print(analogRead(A7));
  adco = (float)analogReadCache(AA7) * ref_VCC / 1000;
  printV(adco);

  Serial.print((AA0));
  Serial.print(';');
  Serial.print((AA1));
  Serial.print(';');
  Serial.print((AA2));
  Serial.print(';');
  Serial.print((AA3));
  Serial.print(';');
  Serial.print((AA6));
  Serial.print(';');
  Serial.print((AA7));
  Serial.print(';');
  Serial.print(itmp);
  Serial.println();
    
  u8g2.sendBuffer();					// transfer internal memory to the display

  if(Serial.available() > 0) {
    char in = Serial.read();
    switch(in) {
      case '1':
      case 1:
        digitalWrite(2, HIGH);
        Serial.println("o1");
        break;
      case '0':
      case 0:
        digitalWrite(2, LOW);
        Serial.println("o0");
        break;
        
    }
  }

  //Wait 100ms to next display
  unsigned long lct = millis() + 500;
  while(millis() <= lct) {
    AA0 = (AA0 + (analogRead(A0)*10)) / 2;
    AA1 = (AA1 + (analogRead(A1)*10)) / 2;
    AA2 = (AA2 + (analogRead(A2)*10)) / 2;
    AA3 = (AA3 + (analogRead(A3)*10)) / 2;
    AA6 = (AA6 + (analogRead(A6)*10)) / 2;
    AA7 = (AA7 + (analogRead(A7)*10)) / 2;
  }
}

unsigned int analogReadCache(unsigned int out) {
  return out/10;
}
/*
* USBMeter Test Sketch
* Copyright (c) 2017, Florian Knodt - www.adlerweb.info
* 
* Based on U8G2 HelloWorld.ino 
* Copyright (c) 2016, olikraus@gmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, 
* are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice, this list 
*    of conditions and the following disclaimer.
*    
*  * Redistributions in binary form must reproduce the above copyright notice, this 
*    list of conditions and the following disclaimer in the documentation and/or other 
*    materials provided with the distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
*  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
*  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
*  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
*  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
*  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
*  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
*  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
*  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
*  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
*
*/

#include <Arduino.h>
#include <U8g2lib.h>
#include <Wire.h>
#include <EEPROM.h>

U8G2_SSD1306_128X64_NONAME_1_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // All Boards without Reset of the Display

//#define DEBUG

#define LED 13
#define FET 2
#define SW 3
#define RE1 4
#define RE2 5

#define ADC_U A0
#define ADC_I A1
#define ADC_DP A3
#define ADC_DN A2
#define ADC_VCC A7
#define ADC_OV A6

#define BROWNOUT 0 //4.6V - write EEPROM and shut down

static const float version = 0.02;

unsigned long lasttime = millis();
unsigned int runtime=0;

unsigned long lastkey = 0;
boolean lastkeyact = false;

unsigned int u_min = 475;
unsigned int u_max = 525;

unsigned int ref_u = 610;

/*
 * 10A

  unsigned int ref_i = 497;
  unsigned int ref_i_o = 174;
  unsigned int ref_i_mva = 146;
*/

/*
 * 5A
*/
  unsigned int ref_i = 412;
  unsigned int ref_i_o = 145;
  unsigned int ref_i_mva = 131;
/**/

unsigned int ref_DP = 615;
unsigned int ref_DN = 613;
unsigned int ref_VCC = 616;
unsigned int ref_OV = 2175;

unsigned int volt=0;
signed int amp=0;
signed int mAh=0;
signed long mWh=0;

char mAh_c=0;
char mWh_c=0;

unsigned int lastVcc=0;

unsigned int DP=0;
unsigned int DN=0;

byte signaling = 0; //0=open; 1=data; 2=apple-500; 3=Apple-1000; 4=Apple-2000; 5=DCP

/*
 * When D+ = D? = 2.0 V, the device may pull up to 500 mA.
 * When D+ = 2.0 V and D? = 2.8 V, the device may pull up to 1 A of current.
 * When D+ = 2.8 V and D? = 2.0 V, the device may pull up to 2 A of current.
 */

char flags[4];
byte uov = 0;
byte uovAct = 0;

byte menu = 0;
byte menuAct = 0;
char uartBtn = 0x00;

unsigned int adc_u = 0;
unsigned int adc_i = 0;
unsigned int adc_DP = 0;
unsigned int adc_DN = 0;
unsigned int adc_VCC = 0;
unsigned int adc_OV = 0;

boolean running = false;
boolean output = false;

void setup() {
  unsigned int tRead=0;
  
  // put your setup code here, to run once:
  pinMode(LED, OUTPUT);
  pinMode(FET, OUTPUT);

  pinMode(SW, INPUT_PULLUP);
  pinMode(RE1, INPUT_PULLUP);
  pinMode(RE2, INPUT_PULLUP);

  pinMode(ADC_U, INPUT);
  pinMode(ADC_I, INPUT);
  pinMode(ADC_DP, INPUT);
  pinMode(ADC_DN, INPUT);
  pinMode(ADC_VCC, INPUT);
  pinMode(ADC_OV, INPUT);

  digitalWrite(LED, LOW);
  digitalWrite(FET, LOW);
  digitalWrite(ADC_U, LOW);
  digitalWrite(ADC_I, LOW);
  digitalWrite(ADC_DP, LOW);
  digitalWrite(ADC_DN, LOW);
  digitalWrite(ADC_VCC, LOW);
  digitalWrite(ADC_OV, LOW);

  analogReference(INTERNAL); //1.1V internal bandgap reference

  EEPROM.get(0, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) u_min = tRead;
  EEPROM.get(2, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) u_max = tRead;
  EEPROM.get(4, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_u = tRead;
  EEPROM.get(6, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_i = tRead;
  EEPROM.get(8, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_DP = tRead;
  EEPROM.get(10, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_DN = tRead;
  EEPROM.get(12, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_VCC = tRead;
  EEPROM.get(14, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_OV = tRead;
  EEPROM.get(16, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) mAh = tRead;
  EEPROM.get(18, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) mWh = tRead;
  EEPROM.get(22, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) runtime = tRead;
  
  Serial.begin(115200);

  Serial.println(F("#BOOT"));
  Serial.println(F("#USB POWER Monitor - www.adlerweb.info"));
  Serial.print(F("#Version: "));
  Serial.println(version);

  Serial.print(F("#[C] uMin: "));
  Serial.println(u_min);
  Serial.print(F("#[C] uMax: "));
  Serial.println(u_max);
  Serial.print(F("#[C] ref_u: "));
  Serial.println(ref_u);
  Serial.print(F("#[C] ref_i: "));
  Serial.println(ref_i);
  Serial.print(F("#[C] ref_DP: "));
  Serial.println(ref_DP);
  Serial.print(F("#[C] ref_DN: "));
  Serial.println(ref_DN);
  Serial.print(F("#[C] ref_VCC: "));
  Serial.println(ref_VCC);
  Serial.print(F("#[C] ref_OV: "));
  Serial.println(ref_OV);
  Serial.print(F("#[C] mAh: "));
  Serial.println(mAh);
  Serial.print(F("#[C] mWh: "));
  Serial.println(mWh);
  Serial.print(F("#[C] runtime: "));
  Serial.println(runtime);
  
  u8g2.begin();
  u8g2.firstPage();

  do {
    u8g2.setFont(u8g2_font_6x13_tr);
    u8g2.drawStr(11,13,"USB POWER MONITOR");
    u8g2.drawStr(11,25,"www.adlerweb.info");
  
    String out;
    out = "Version: ";
    out += version;
  
    char outc[out.length()+1];
    out.toCharArray(outc, sizeof(outc));
  
    u8g2.drawStr(25,50,outc);
  } while ( u8g2.nextPage() );

  delay(1000);
}


void dbug(String str) {
  #ifdef DEBUG
    Serial.print("D:");
    Serial.println(str);
  #endif
}


void loop() {
  unsigned int passed = (millis()-lasttime)/1000;
  
  getReadings();
  checkVcc();
  procUART();
  procSwitch();
  
  if(!u8g2.nextPage() && (millis()-lasttime)/1000 > 0) {
    dbug("FRAME");
    
    if(running && runtime < 0xFFFF) {
      runtime += (millis()-lasttime)/1000;
    }

    lasttime = millis();

    u8g2.firstPage();

    volt = procVolt();
    amp = procAmp();
    procmAh(passed);
    procmWh(passed);

    procDP();
    procDN();
    procSignaling();

    flags[0] = 'C';
    if(running) flags[0] = 'D';
    flags[1] = 'Q';
    if(output) flags[1] = 'S';
    
    switch(signaling) {
      case 1: //Data
        flags[2] = 'f';
        break;
      case 2: //Apple 0.5
      case 3: //Apple 1.0
      case 4: //Apple 2.0
        flags[2] = 'I';
        break;
      case 5: //DCP
        flags[2] = 'J';
        break;
      default: //0=OPEN
        flags[2] = 'H';
    }

    uovAct = uov;
    menuAct = menu;
    
    Serial.print('!');
    Serial.print(volt);
    Serial.print(';');
    Serial.print(amp);
    Serial.print(';');
    Serial.print(mAh);
    Serial.print(';');
    Serial.print(mWh);
    Serial.print(';');
    Serial.print(runtime);
    Serial.print(';');
    Serial.print(running);
    Serial.print(';');
    Serial.print(output);
    Serial.print(';');
    Serial.print(signaling);
    Serial.print(';');
    Serial.print(lastVcc);
    Serial.println();
  }

  switch(menuAct) {
    case 0:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
    
      drawVolt();
      drawAmp();
    
      drawWatt();
      
      drawAh();
      drawWh();
      
      drawTime(runtime);
    
      switch(uovAct) {
        case 1:
          u8g2.drawStr(115,63,"UV");
          break;
        case 2:
          u8g2.drawStr(115,63,"OV");
          break;
      }
    
      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 1:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");

      drawDP();
      drawDN();
      drawSignaling();
      drawVCC();
      
      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 2:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
      u8g2.drawStr(0,25,"Lower Limit:");

      drawUMin();

      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 3:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
      u8g2.drawStr(0,25,"Upper Limit:");

      drawUMax();

      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
  }
  
}

void getReadings(void) {
  #ifdef DEBUG
  Serial.print('.');
  #endif
  
  if(adc_u == 0) {
    adc_u = analogRead(ADC_U)*10;
  }else{
    adc_u = (adc_u + analogRead(ADC_U)*10) / 2;
  }
  
  if(adc_i == 0) {
    adc_i = analogRead(ADC_I)*10;
  }else{
    adc_i = (adc_i + analogRead(ADC_I)*10) / 2;
  }
  
  if(adc_DP == 0) {
    adc_DP = analogRead(ADC_DP)*10;
  }else{
    adc_DP = (adc_DP + analogRead(ADC_DP)*10) / 2;
  }
  
  if(adc_DN == 0) {
    adc_DN = analogRead(ADC_DN)*10;
  }else{
    adc_DN = (adc_DN + analogRead(ADC_DN)*10) / 2;
  }
  
  if(adc_VCC == 0) {
    adc_VCC = analogRead(ADC_VCC)*10;
  }else{
    adc_VCC = (adc_VCC + analogRead(ADC_VCC)) / 2;
  }
  
  if(adc_OV == 0) {
    adc_OV = analogRead(ADC_OV);
  }else{
    adc_OV = (adc_OV + analogRead(ADC_OV)*10) / 2;
  }
}

void checkVcc(void) {
  unsigned int vccchk = getVcc();

  if(vccchk <= BROWNOUT) {
    EEPROM.put(16, mAh);
    EEPROM.put(18, mWh);
    EEPROM.put(22, runtime);
    fetOff();
    digitalWrite(LED, HIGH);
    Serial.println(F("E:VCC"));
    Serial.flush();
    while(1) {}
  }
}

unsigned int getVcc(void) {
  unsigned int adco = (float)adc_VCC * ref_VCC / 10000;
  lastVcc = adco;
  adc_VCC = 0;
  return adco;
}

void procUART(void) {
  unsigned int temp=0;
  if(Serial.available()) {
    switch(Serial.read()) {
      case '1':
        fetOn();
        Serial.println(F("OK"));
        break;
      case '0':
        fetOff();
        Serial.println(F("OK"));
        break;
      case 'r':
        runtime = 0;
        mAh=0;
        mWh=0;
        mAh_c=0;
        mWh_c=0;
        uov=0;
        Serial.println(F("OK"));
        break;
      case 's':
        running = false;
        fetOff();
        Serial.println(F("OK"));
        break;
      case 'S':
        running = true;
        fetOn();
        Serial.println(F("OK"));
        break;
      case '<':
        temp = Serial.parseInt();
        if(temp > 0) {
          u_min = temp;
          EEPROM.put(0, u_min);
          Serial.println(F("OK"));
        }
        break;
        temp = Serial.parseInt();
        if(temp > 0) {
          u_max = temp;
          EEPROM.put(2, u_max);
          Serial.println(F("OK"));
        }
        break;
      case 'u':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_u = temp;
          EEPROM.put(4, ref_u);
          Serial.println(F("OK"));
        }
        break;
      case 'i':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_i = temp;
          EEPROM.put(6, ref_i);
          Serial.println(F("OK"));
        }
        break;
      case 'p':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_i = temp;
          EEPROM.put(8, ref_i);
          Serial.println(F("OK"));
        }
        break;
      case 'n':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_DN = temp;
          EEPROM.put(10, ref_DN);
          Serial.println(F("OK"));
        }
        break;
      case 'v':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_VCC = temp;
          EEPROM.put(12, ref_VCC);
          Serial.println(F("OK"));
        }
        break;
      case 'O':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_OV = temp;
          EEPROM.put(14, ref_OV);
          Serial.println(F("OK"));
        }
        break;
      case 'V':
        Serial.print(F("#Version: "));
        Serial.println(version);
        break;
      case 'm':
        uartBtn = 'm';
        break;
      case '+':
        uartBtn = '+';
        break;
      case '-':
        uartBtn = '-';
        break;
    }
  }
}

void procSwitch(void) {
  if(( lastkey+100) > millis()) return;
  
  if(lastkeyact) {
    if(digitalRead(SW) == HIGH && digitalRead(RE1) == HIGH && digitalRead(RE2) == HIGH) {
      lastkeyact = false;
      lastkey = millis()+50;
    }

    return;
  }
  
  if(digitalRead(SW) == LOW || uartBtn == 'm') {
    lastkeyact = true;
    lastkey = millis();

    if(menu == 2) {
      unsigned int temp=0;
      EEPROM.get(0, temp);

      if(temp != u_min) EEPROM.put(0, u_min);
    }
    if(menu == 3) {
      unsigned int temp=0;
      EEPROM.get(2, temp);

      if(temp != u_max) EEPROM.put(2, u_max);
    }
    
    menu++;
    if(menu > 3) menu = 0;
  }

  switch(menu) {
    case 0:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        if(running) {
          fetOff();
          running = false;
        }else{
          fetOn();
          uov=0;
          running = true;
        }
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        runtime = 0;
        mAh=0;
        mWh=0;
        mAh_c=0;
        mWh_c=0;
        uov=0;
      }
      break;
    case 1:
      break;
    case 2:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        u_min++;
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        u_min--;
      }
      break; 
    case 3:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        u_max++;
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        u_max--;
      }
      break;
  }
  uartBtn = 0x00;
}

unsigned int procVolt(void) {
  unsigned int adco = (float)adc_u * ref_u / 10000;

  if(adco > 620) { //use secondary ADC
    adco = (float)adc_OV * ref_OV / 1000;
  }

  adc_u=0;
  adc_OV=0; 
  
  return adco;
}

signed int procAmp(void) {
  signed int adco=0;

  
  
  adco = (((signed long)adc_i * ref_i) - ((signed long)ref_i_o*10000)) * ((float)ref_i_mva/100000);
  /*adco = adco - ref_i_o;
  adco *= ref_i_mva;
  adco /= 10;*/

  adc_i = 0;
  
  if(!output) return 0;
  return adco;
}

void procmAh(unsigned int timedelta) {
  boolean neg = false;
  signed int tamp = amp;

  if(tamp < 0) {
    tamp *= -1;
    neg = true;
    mAh_c = 0;
  }
  
  signed long temp = mAh_c;

  temp += (signed long)(tamp * 10 * timedelta) / 36;

  if(neg) {
    mAh -= (temp/100);
  }else{
    mAh += (temp/100);
    mAh_c = temp % 100;
  }
}

void procmWh(unsigned int timedelta) {
  signed long temp = mWh_c;
  temp += (((signed long)amp * timedelta * volt) / 3600);
  mWh_c = temp % 10;
  mWh += (temp/10);
}

void procDP(void) {
  DP = (float)adc_DP * ref_DP / 10000;
  adc_DP = 0;
}

void procDN(void) {
  DN = (float)adc_DN * ref_DN / 10000;
  adc_DN = 0;
}

void procSignaling(void) {
  if(DP > 180 && DP < 220 && DN > 180 && DN < 220) {
    signaling = 2; //Apple 0.5A
  }else if(DP > 180 && DP < 220 && DN > 260 && DN < 300) {
    signaling = 3; //Apple 1.0A
  }else if(DP > 260 && DP < 300 && DN > 180 && DN < 220) {
    signaling = 4; //Apple 2.0A
  }else{ //Check if pins are shorted for DCP
    digitalWrite(ADC_DP, LOW);
    pinMode(ADC_DP, OUTPUT);
    delay(2);
    if(analogRead(ADC_DN) > 16) {
      signaling = 1; //Nope - looks like something else is pulling it HIGH, propably data
    } else{
      pinMode(ADC_DP, INPUT_PULLUP);
      delay(2);
      if(analogRead(ADC_DN) > 16) {
        signaling = 0; //Nothing changed - propably not connected
      } else{
        signaling = 5; //Looks like DCP
      }
    }
    digitalWrite(ADC_DP, LOW);
    pinMode(ADC_DP, INPUT);
  }
}

void drawVolt(void) {
  String out;

  unsigned int adc = volt;

  if(uov==0) {
    if(adc < u_min) {
      Serial.println("UV");
      uov=1;
      fetOff();
      running = false;
    }
    if(adc > u_max) {
      Serial.println("OV");
      uov=2;
      fetOff();
      running = false;
    }
  }

  out =  "U: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,25,outc);
}

void drawAmp(void) {
  String out;

  signed int adc = amp;

  out =  "I: ";
  if(adc < 0) {
    out += '-';
    adc *= -1;
  }
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "A";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,25,outc);
}

void drawWatt() {
  String out;

  signed int adc = (signed long)((signed long)volt * (signed long)amp) / 100;

  out =  "P: ";
  
  if(adc < 0) {
    out += '-';
    adc *= -1;
  }
  
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "W";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,37,outc);
}

void drawAh(void) {
  String out = "";

  signed int adc = mAh;

  if(adc<0) {
    out += '-';
    adc*=-1;
  }

  out += adc/1000;
  out += '.';
  adc %= 1000;
  if(adc < 100) out += '0';
  if(adc < 10) out += '0';
  out += adc;
  out += "Ah";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void drawWh(void) {
  String out = "";

  signed int adc = mWh;

  if(adc<0) {
    out += '-';
    adc*=-1;
  }

  out += adc/1000;
  out += '.';
  adc %= 1000;
  if(adc < 100) out += '0';
  if(adc < 10) out += '0';
  out += adc;
  out += "Wh";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,50,outc);
}

void drawTime(unsigned int calctime) {
  String out;

  int days = calctime / 86400;
  calctime %= 86400;

  int hours = calctime / 3600;
  calctime %= 3600;

  int minutes = calctime / 60;
  calctime %= 60;

  out  = days;
  out += "d ";
  out += hours;
  out += "h ";
  out += minutes;
  out += "m ";
  out += calctime;
  out += "s";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,63,outc);
}

void drawDP(void) {
  String out;

  unsigned int adc = DP;

  out =  "D+: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,25,outc);
}

void drawDN(void) {
  String out;

  unsigned int adc = DN;

  out =  "D-: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,25,outc);
}

void drawSignaling(void) {
  String out;

  switch(signaling) {
    case 0:
      out = "Not connected";
      break;
    case 1:
      out = "Data Connection";
      break;
    case 2:
      out = "Apple 0.5A";
      break;
    case 3:
      out = "Apple 1.0A";
      break;
    case 4:
      out = "Apple 2.0A";
      break;
    case 5:
      out = "USB Charger";
      break;
    default:
      out = "Unknown";
  }

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,37,outc);
}

void drawVCC(void) {
  String out;

  unsigned int adc = lastVcc;

  out =  "Vcc: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,63,outc);
}

void drawUMin(void) {
  String out;

  unsigned int adc = u_min;

  out =  "Umin: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void drawUMax(void) {
  String out;

  unsigned int adc = u_max;

  out =  "Umax: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void fetOff(void) {
  output = false;
  digitalWrite(FET, LOW);
}

void fetOn(void) {
  output = true;
  digitalWrite(FET, HIGH);
}


 

BitBastelei #222 – USB Power Monitor – Hardware-Überlegungen

BitBastelei #222 - USB Power Monitor - Hardware-Überlegungen

(151 MB) 00:18:22

2016-12-11 11:00 🛈

Den USB Charger-Doctor und seine Gefährten dürften die meisten von euch kennen. Die kleinen Geräte können Spannung und Strom eines USB-Anschlusses messen und anzeigen. Leider fehlen mir ein paar Funktionen wie z.B. ein PC-Anschluss um die Daten aufzeichnen zu können. Also: Bauen wir uns selbst einen.

Ergänzungen:

Einem aktuellen Video von Hugatry’s HackVlog nach sollte sich auch Qualcomm Quick Charge erkennen lassen (EN):
https://www.youtube.com/watch?v=UYRZ0t5eyjE

Etwa zeitgleich hat auch Great Scott Labs ein ähnliches Gerät gebaut. Er nutzt statt einer PC-Anbindung eine SD-Karte zum aufzeichnen (EN):
https://www.youtube.com/watch?v=lrugreN2K4w

BitBastelei #157 – Seek Thermal Imager – Wärmebildkamera für’s Smartphone

BitBastelei #157 - Seek Thermal Imager - Wärmebildkamera für's Smartphone

(119 MB) 00:25:15

2015-07-12 10:00 🛈

Der Seek Thermal Imager ist eine „Wärmebildkamera“ für’s Smartphone. Besonders dank der vergleichsweise hohen Auflösung und dem günstigen Preis hatte das Produkt beim Release letztes Jahr einige Blicke auf sich gezogen. Leider werden solche Kameras teilweise als „Waffentauglich“ eingeschätzt, entsprechend ist ein Kauf außerhalb der USA etwas abenteuerlich – glücklicherweise konnte ich eine gebraucht ergattern. Also: Schnell fürs eigene Gerät angepasst und los geht die Suche.

Timecodes

  • 00:13 Unboxing
  • 07:08 USB-Adapter Basteln
  • 14:35 …und was kommt bei raus?

Links

BitBastelei #137 – UniT UT139 Mod: Ultracap, Qi Wireless & USB

BitBastelei #137 - UniT UT139 Mod: Ultracap, Qi Wireless & USB

(256 MB) 00:40:47

2015-02-22 11:00 🛈

In Biba #133 wurde das Konzept ja schon erfolgreich getestet: Mit einem Speicherkondensator lässt sich über einen Linearregler das Uni-T UT139A Multimeter etwa 8 Minuten mit Strom versorgen. Diesmal wird die Schaltung im Multimeter verbaut und mit passenden Lademöglichkeiten versehen:

Die erste und einfachste Möglichkeit stellt das von Handys bekannte Qi dar, welches ein drahtloses Laden ermöglicht. Hierzu wird ein passender Receiver, welcher eigentlich in Handys zum Einsatz kommt, verbaut (~4€). Legt man das Multimeter nun auf ein passendes Transmitter-Pad (~3€) beginnt das Multimeter zu laden – drahtlos und ohne die Gefahr durch verbundene Masseleitungen das Gerät zu beschädigen. Die hierbei genutzten Magnetfelder scheinen keinen unmittelbar sichtbaren Einfluss auf die Messfunktion zu haben. Die geringe Effizient ist durch die geringen Ströme sowie die nur sporadische Nutzung zu vernachlässigen.

Zweite Möglichkeit stellt ein USB-Anschluss dar. Aus Platzgründen kommt hier eine USB A-Buchse zum Einsatz – diese ist kompakter als die bei Endgeräten üblichen USB-B-Buchsen, jedoch – im Gegensatz zu Micro-USB – auch als nicht-SMD-Version verfügbar. Durch die Möglichkeit das Gerät während des Ladens bewegen zu können stellt diese Methode eine Möglichkeit dar auch längere Messsitzungen abzuhalten. Zu beachten ist, dass die Masseleitungen hochohmig verbunden sind, man sollte also nicht per USB-Netzteil laden und gleichzeitig eine Spannung mit Erdreferenz (=Gerät mit Steckdosenanschluss) messen. Abhilfe schafft hier das laden per USB-Akkubank, alternativ könnte man einen galvanisch getrennten Schaltregler zwischenschalten.

BitBastelei #134 – Cardreader-Spielereien

BitBastelei #134 - Cardreader-Spielereien

(39 MB) 00:06:58

2015-02-01 11:00 🛈

Karnevalsbedingt ist momentan nicht viel Zeit um herumzubasteln, entsprechend fällt die heutige BitBastelei auch eine Nummer kleiner aus: Der in der letzten Mailbag vorgestellte SD-Cardreader bekommt ein passendes USB-Kabel und darf gegen den interenen Leser meines Laptops antreten.

Modul: http://www.pollin.de/shop/dt/MDE2NzcyOTk-

BitBastelei #129 – Dancing USB Robot

BitBastelei #129 - Dancing USB Robot

(44 MB) 00:20:19

2014-12-28 11:00 🛈

Spielzeug… Zu Weihnachten gab es einen tanzenden USB-Roboter der Firma „Dream Cheeky“. Windows only versteht sich. Ohne weitere Ahnung wird also „mal schnell“ ein Linux-Tool zur Ansteuerung improvisiert.

https://github.com/adlerweb/ctlrobot

BitNotice #56 – Festival-Bastel-LiPo-Handylader

BitNotice #56 - Festival-Bastel-LiPo-Handylader

(8 MB) 00:01:24

2014-09-10 16:38 🛈

Verdammt: Festival vor der Tür, ein Haufen voller LiPos und die passenden LiPo-USB-Module sind noch nicht da. Im Notfall müssen dann 2 Zellen (7.4V) und ein normales Step-Down-Modul herhalten. Als Tiefentladeschutz dient ein kleines Voltmeter.

Etwas spät, Video erst jetzt wieder auf dem Handy gefunden. Die Konstruktion hatte das ganze Festival über durchgehalten und selbst die Navi-Funktion der Heimtour überlebt.

BitBastelei #76 (Part 2/2) Installation von Arch Linux

BitBastelei #76 (Part 2/2) Installation von Arch Linux

(85 MB) 00:49:04

2013-12-29 11:00 🛈

Die grundlegenden Schritte lassen sich auf https://wiki.archlinux.org/index.php/Beginners’_Guide/Installation finden.

Die Hintergründe warum ich installiere und was meine Ziele sind finden sich in Part 1.

Inhalt
======
00:13 Download
01:05 USB-Stick zur Installation vorbereiten
02:49 Dateiintegrität per md5sum prüfen
03:30 Boot von USB-Stick
05:20 Wenns nicht bootet: acpi=off
07:00 Internetzugang konfigurieren
08:37 Tastatur auf Deutsch umschalten
08:47 Partitionieren der Festplatte
12:21 Formatieren der Partitionen (1 swap/ext2)
13:14 Verschlüsseln einer Partition mit cryptsetup
16:28 Formatieren der Partitionen (2 btrfs)
17:30 Mounten der Partitionen
18:44 Mirrorliste
19:49 Installation des Grundsystems
21:18 Erstellen einer fstab
21:47 Wechsel ins neue System
22:07 Konfiguration: locale-gen, Sprache, Keymap, Zeitzone, Hostname
24:40 initrd für Verschlüsselung anpassen
26:04 Bootloader installieren & konfigurieren
28:20 Passwort setzen
28:44 Erster Start ins neue System
29:50 Netzwerk & Installation von SSH
30:29 Dienste per Systemd
31:18 Desktop Environments: KDE/GNOME/XFCE/LXDE
33:15 Softwareinstallation: Gruppen, Provider, Optionale Abhängigkeiten, Suche
36:06 AUR: Übersicht
37:37 AUR: Installation per Hand
40:45 AUR: Installation per yaourt
43:38 fstab: Kompression für btrfs
45:16 Anlegen eines Users
45:34 Installation eines Grafikservers
46:10 Start des LXDM
46:37 Netzwerkkonfiguration per NetworkManager
47:25 Deutsche Tastatur in der grafischen Oberfläche
47:53 Anpassen des Panels: Akkumonitor
48:20 Fazit

Ergänzungen:
============
02:19 – Korrektur: bs=4M – dd if=archlinux….iso of=/dev/sdx bs=4M
07:53 – Wenn bereits beim Booten ein Netzwerkkabel eingesteckt ist bezieht der Rechner bereits eine IP, dieser Schritt kann dann entfallen
08:29 – https://wiki.archlinux.org/index.php/Beginners’_Guide/Installation#Wireless
10:03 – https://wiki.archlinux.org/index.php/Beginners’_Guide/Installation#Using_cgdisk_to_create_GPT_partitions
11:40 – SWAP = Auslagerungsspeicher, Erweiterung des RAMs auf der Festplatte. Hiermit kann das System selten genutzte Daten des Arbeitsspeichers auf die Festplatte verschieben und so den schnelleren RAM zur Verfügung halten.
20:26 – https://wiki.archlinux.org/index.php/Grub#UEFI_systems_2
42:53 – …und ein RM, welches jedoch auch OK aussieht…
46:49 – Wenn man immer Netzwerk möchte sollte man den Dienst automatisch starten: „systemctl enable NetworkManager“

Hinweise:
=========
Nicht vergessen: Es gibt keine 100%ige Sicherheit. Da die Bootdateien hier zum Beispiel nicht verschlüsselt sind könnte ein Angreifer an dieser Stelle ansetzen und den Kernel infizieren. Erschweren kann man dieses vorgehen z.B. durch ein Bootloader-Passwort, einen modifizierten Bootloader für verschlüsselte Partitionen oder durch dsa Auslagern der Boot-Dateien auf einen USB-Stick. Auch kann man z.T. mit Kältespray und entsprechender Hardware das RAM auslesen und so den Verschlüsselungskey zusammensetzen. Ebenfalls bringt die Verschlüsselung nichts, wenn eine Applikationslücke genutzt wird.